
An AppDynamics Business White Paper

Application platforms like Blackboard, Kuali and OnCore
have helped thousands of universities modernize their
course registration, records management and even
financial systems. For schools that had been using
homegrown applications or archaic card systems,
these applications have made lives immensely easier.
However, there are inherent risks in purchasing
or downloading a third party application. When
something goes wrong, you must rely on your vendor’s
support team – or, if it’s an open source solution, your
own wits – to get the application back up and running
before your students start complaining.

SUPPORTING BLACKBOARD, KUALI, ONCORE AND MORE

4 Critical Strategies for Managing
Higher Ed Apps

4 Critical Strategies for Managing Higher Ed Apps

Universities such as Cornell University and Washington University of St. Louis
have chosen to use Application Performance Management (APM) to help them
troubleshoot performance problems in their third party applications on the fly. With
an APM solution in place, sys admins and other IT staff at these universities are able
to provide support teams with fine-grained detail about performance problems in
production. When selecting an APM tool, however, these universities discovered
that not all solutions are created equal. A good APM solution must be extremely
intuitive, far-ranging in its capabilities, and able to speak the language of business –
not the language of developers.

In particular, they selected their APM tools with the four following strategic end
goals in mind:

Without all of these capabilities, an APM tool may be able to support certain
application performance functions but will ultimately be ill-equipped for the
demands of a quickly changing IT environment.

1. Simple to Install and Use
Many APM tools are difficult to install, use, and maintain. But within the APM space,
there are standard practices available, such as the ability to auto-discover an
application’s architecture and quickly alter the mapping of the application’s topology
when agile release cycles introduce code changes. Your APM tool should leverage
those best practices and make application management extremely easy for you.

For example, an APM tool should not require more than a series of simple steps in
order to be installed. It should be up, running, and instrumenting the distributed
application within hours or even minutes. The process looks something like this: the
end user installs the agents on all managed servers and virtual machines, installs
the controller, and re-starts the application. At that point, the tool itself should be
able to handle the challenge of mapping all the databases, tiers, and nodes within
the distributed application, as well as displaying those relationships in an intuitive
and visual way.

However, with regards to many APM solutions, it’s necessary to perform a great
deal of ”post-install” work—mostly aimed at tying pieces of the data flow together,
manually mapping the relationship between the JVMs, setting up instrumentation
for visibility, preparing the aggregation for all the data collectors, and identifying
the logical tiers. Unless the APM tool is discovering this information for you, the
“simple implementation” quickly turns into a mountain of post-install work.

2

“AppDynamics lets us
bridge the gap between
anecdotes from users
and actual, actionable
information.”
–Kevin Kronenbitter, Technical Lead at
Cornell University

– SIMPLE TO INSTALL AND USE

– ABLE TO GAIN FULL VISIBILITY

– ABLE TO GAIN DEEP DIAGNOSTICS

– ABLE TO UNDERSTAND BUSINESS
TRANSACTIONS

4 Critical Strategies for Managing Higher Ed Apps 3

2. Able to Gain Full Visibility
Traditional applications often consisted of little more than a few JVMs talking to
one another. In the present day, a typical IT environment consists of a multitude of
open source and proprietary components and distributed tiers, all attempting to
communicate together in order to perform complex business transactions.

If an APM tool captures just a piece of this massive web of communication—but
is unable to reveal the entire architecture, leaving blind spots in place—then the
solution will fail to provide value. At the same time, the tool should not just provide
visibility into what already exists, but be able to automatically discover, trace,
correlate, and visualize transaction performance when agile development cycles
introduce new code into the environment.

3. Able to Gain Deep Diagnostics (and That Means In Production Too)
New tools must be introduced into the production environment with extreme
caution, care, and planning. That’s why many APM tools aren’t used in production,
even if they’re adept at illuminating a highly distributed application. The ability to
go “wide” often precludes the ability to go “deep” in production, where adding too
much overhead remains an ever-present danger.

And yet, without the ability to go deep on demand—to isolate a problem at the
code level without calling in the developer who wrote the code—the APM tool won’t
be a reliable asset. It’s necessary to drill down and see method-level detail of a
particular transaction, and understand whether the incident is caused by resource
constraints, bad code, or any number of potential culprits.

“When they saw the
call stack analysis, the
programmers went
‘Bingo!’ and we were
able to fix an issue that
had plagued us for a long
time.”

–Bijoy George, Biomedical Informatics
Program Manager at Washington
University in St. Louis

QUESTIONS TO ASK AN APM PROVIDER:

 ‒ Does your tool have insight into the entire distributed environment?
 ‒ Are there any blind spots in your current architecture?
 ‒ If it does map the environment, how does that data come back to you? Is it simple

to view?

QUESTIONS TO ASK AN APM PROVIDER:

 ‒ What is the installation process up
front?

 ‒ What kind of post-install work is
required?

 ‒ How does the tool map the
application?

 ‒ How does it display that mapping?
 ‒ Does it keep up with the needs of agile

development?
 ‒ How much manual instrumentation is

needed for complete visibility?

4 Critical Strategies for Managing Higher Ed Apps 4

How can the tool retain the ability to “go deep” but still be “always on,” ensuring
that the diagnostic process does not result in significant overhead? Clearly, this
means something other than manually instrumenting all the classes and the code
paths—which by itself could still result in blind spots, and will very likely result in
unacceptable overhead. Rather, the APM tool must be able to capture details of a
problem whenever a problem occurs. This sounds glaringly obvious, but many APM
tools work poorly in production as a result of dragging down the application with a
lack of “always on” diagnostic capabilities.

This is a key point: an APM tool needs to go both deep and wide in production,
being “always on” but without bringing significant overhead to bear on the
application. If the tool causes more than 2% overhead, it will not be usable by
anyone other than the team that developed the app.

4. Able to Understand Business Transactions
The ability for an APM tool to focus on business transactions is important. It allows
the tool to create a common language between developers and IT operations by
representing the transaction, rather than a snippet of code.

A business transaction represents a “user generated” action. For example, a student
might register for a class in Blackboard, or a member of your financial services
department might approve a purchase order in Kuali Financial System (KFS). The
APM tool needs to be able to make these actions highly visible to the IT operations
team. This is an essential part of the simplicity and usability of the APM tool: the
ability to talk in the language of business.

Once the APM tool gives you a clear view into the application’s business transactions,
then it’s possible to measure the performance of those transactions. In legacy
APM tools, it’s necessary for you to do this by setting manual thresholds for each
transaction. For example, you might say that the class registration transaction takes
two seconds on average, or the student log-in takes half a second.

The problem with this approach is that you may not have the data to set those
thresholds yourself. You could make an educated guess, but the burden is on you
to tell the APM tool how well your application performs. If the transaction responds
to load differently on Sunday versus Monday, or at 9 a.m. versus 8 p.m., or in
late November versus the middle of July, it’s up to you to specify the appropriate
threshold for each time period. If your performance policies aren’t granular enough
to reflect the true performance profile that occurs during the hours in which you
operate, as well as to account for periodic variations, you’ll either lack visibility or be
flooded with false alarms.

QUESTIONS TO ASK AN APM PROVIDER:

 ‒ Can your APM tool go deep as well as wide?
 ‒ How does it isolate problem areas at the code level?
 ‒ How much overhead does it add? Less than 2%?

AppDynamics, Inc.
www.appdynamics.com

Copyright © 2014 AppDynamics, Inc. All rights reserved. The term
APPDYNAMICS and any logos of AppDynamics are trademarked or
registered trademarks of AppDynamics, Inc.

Try it FREE at
www.appdynamics.com

An APM tool that leverages best practices should be able to set those thresholds for
you. This is often called dynamic baselining. This means being able to set baselines
for your application by discovering how each transaction’s performance may vary
over specified operating periods. It observes periodic variations, accounts for
them, and sets thresholds accordingly. A tool that sets dynamic baselines for each
business transaction will be highly accurate and eliminate false alarms.

Summary
Managing the performance of your Blackboard, Kuali or other higher ed application
requires a strategic approach, particularly in a space crowded with multiple
application performance solutions boasting very similar messages. To assist your
decision, leverage these four strategies for application performance management—
and ensure the ongoing health and reliability of your revenue-critical applications.

QUESTIONS TO ASK AN APM PROVIDER:

 ‒ How do you define “business transactions”?
 ‒ How does your tool represent them?
 ‒ How does your tool speak the “business language” of the application?
 ‒ Does the tool learn and react from performance baselines dynamically? If not,

how are they set and maintained?

