APPDYNAMICS

An AppDynamics Business White Paper

Top 10 reasons your eCommerce
site will fail during peak periods

For eCommerce organizations, peak periods are crucial
for the bottom line. In the US, there’s Black Friday and
Cyber Monday, however eCommerce sites globally need
to plan for the extra traffic and load that happens
during holidays and throughout sales. As more and
more shopping is moving online, however, the success
of the shopping season for the store depends more
and more on the ability of its eCommerce applications
to serve the high volume of demand. While many
organizations prepare intensively for the season with
load and performance testing, it’s impossible for them
to foresee every scenario that could affect application
performance at a critical time. Here are a few of the
most common causes of performance bottlenecks and
outages to prepare for this holiday season.

APPDYNAMICS

Top 10 reasons your eCommerce site will fail during peak periods

1. Exhausted database connection pools

Nearly every Checkout transaction will interact with one or more databases.
Database connections are therefore a precious resource, and a database connection
pool that’s too small can be a bottleneck when concurrency is high. Most
application servers have a default connection pool size of 10-20 connections. For
eCommerce sites that process 100,000 transactions per minute during peak load,
this will be woefully inadequate. Many organizations will never realize this, however,
because they focus their load testing efforts on the web servers and neglect to test
backend services for high concurrency. The below screenshot illustrates what can
happen when your database connection pool is sized too small for your application:

JDBC Calls
Calling Mathod: FacioryPersistencelmpl findAdminLevelCarriars
a,
Tyne Dotais Count Tine (s Tima F rosm Tiesr To Tier
JOBC Gat Pooled Conne 1 168200 471 wE OraceDa1
JOBC SELECT TRANSL 1] 0.2 OraceDa1
¥ 19200 SOl Datasmrce GetConnocton | =
i

Datails

Geld Pooled Conneclion From Datasaurce

Quary ype Datasource GelConnaclion

In this screenshot you see that even though the database call itself only took 99
milliseconds to execute, the end user was waiting for more than 20 seconds because
it took 19 seconds for the thread to get a database connection from the pool.

Even if you no longer use the default settings for your database connection pool,
you should be sure to look at your configurations this November to make sure your
connection pool configuration won’t be a bottleneck that will affect your end users.

APPDYNAMICS

2. Missing database indexes

Slow-running SQL statements hold on to a database connection for longer than
they should, which means the connection pool isn’t recycled often enough and new
threads are forced to wait for connections. The most common root cause for slow
SQL statements is missing indexes on the database tables, which is often caused by
miscommunication between the database administrators (who are responsible for
setting up and maintaining database schemas) and the developers that write the
SQL. The “full table scan” query execution, in which the database operation must
scan through all the data in the table before data is returned, can be very time-
consuming when the table contains millions of rows. By adding an index — a copy of
one or more columns that allows the database operation to quickly

find the rows it needs — you can make common database operations much faster,
freeing up database connections to serve more users.

Call Avg, Time par Number of Ca Max Time Enapshots
Call (ms (ms)

SELECT POSTCODE, ABS{(XCOORD - 487405) + (YCOORD - 181432 2516 1 2516 Bl View snapshats
SELECT POSTCODE, ABS{(XCOORD - 487405) + (YCOORD - 181582 19853 1953 - waps!
SELECT POSTCODE. ABS((XCOORD - 487405) + (YCOORD - 181432 1875 1 1875 [+] h
SELECT POSTCODE, ABS{(XCOORD - 487405) + (YCOORD - 1B157¢ 182E - I
BELECT POf ABS{(XCOORD - 487405) + (YCOORD - 18158{ 1716 - ¥ b

SELECT POSTCODE, ABS{(XCOORD - 487405) + (YCOORD - 18158° 1672 1 1672 - (il
SELECT POSTCODE, ABS{(XCOORD - 4B7405) + (YCOORD - 18148 1641 1 16841 - Vigw Snapshots %

Call Details Corralated Snapshols

CT POETCODE, ABS((XCOORD - 487405) + |
COORD BETWEEN ? AND ?7) ORDER BY D

ORD - 181432)) "DIET* FROM POSTPNTP WHERE (XCOORD BETWEEN ? AND ?)

s*s Explain Plan (From cache)
={0] SELECT STATEMENT (Optimizer Mode: ALL_ROWS)
= [11 HASH (GROUP BY') { Rows: 2 Cost: 1089 Bytes: 240 }

[2] TABLE ACCESS (FULL) BIGTAB { Rows: 191760 Cost: 1081 Bytes: 23011200 }

Here is an example of a transaction with several similar database calls, each of
which takes 1-2 seconds to complete. If you look at the explain plan, you can see
that the database operation accessed the entire table, scanning over 191,000 rows
at a cost of 1 second.

While this isn’t very slow by itself, because the transaction called the database a
dozen times the cumulative effect on response time was quite large.

Before the holidays, do an audit of your most common database operations to
ensure they have indexes, if applicable. You don’t want to discover that your
database is missing a crucial index after your end users are already being affected.

Top 10 reasons your eCommerce site will fail during peak periods 3

APPDYNAMICS

3. Code deadlock

High concurrency often means that application server threads contend for
resources and objects more than usual. Most eCommerce applications have some
form of atomicity built into their transactions to preserve data integrity for order
and stock volumes. This is especially important for eCommerce applications because
they’re dealing with physical merchandise - if your database says there is only one
item left, you must make sure only one person is able to purchase that item before
the database is updated and the website reflects that the item is out of stock.

Summary Statistics Event Summary Event Details

Show o Events Plotted in Histogram ? () All Events ?
Summary

JVM deadlock detected

JWM deadlock detected Summary Details Comments (0)

Application Sarver JVM w (Copy to Clipbloard

JVM deadlock detected | ajp-00.00-8100-14

§7624207] held by thread Jajp-0.0

JVM deadlock detected

Hem. java:B26

Application Server JVM w

Application Server JVM w

fQeaaeaa

M edeadinek detantad sl)
ajp-0.0.0.0-8108-141 Mama|ajp-0.0.0.0-
Diaadlocks L mCached 3d88de 1d) held by thread Jajp-0 0.0.0-8108-14] Threa)

Thread stack |

One way that eCommerce applications achieve this is by putting locks on certain
resources, in this case the product. This is effective at preserving data integrity,
but it can be bad for performance, especially if it causes a code deadlock. Code
deadlock happens when two or more threads are both contending for the same
resource, and often can be disastrous for the application server affected. In

the screenshot below, you see an example of code deadlock that affected an
eCommerce application. Three threads tried to perform a get, set and remove on
the same cache at the same time, causing code deadlock to occur. The resulting
deadlock caused over 2,500 checkout transactions to hang.

Code deadlock is usually the result of an application design that doesn’t account
for concurrency. Because these problems only appear during high concurrency,

it can be difficult to catch them in development or test. Be sure to do load and
performance tests before peak periods to surface issues like these. In addition, be
careful where and how you use locks or synchronous code.

Top 10 reasons your eCommerce site will fail during peak periods 4

APPDYNAMICS

4. CPU-Intensive transaction

Server connectivity is an obvious root cause for performance issues. If you check
your logs using a product like Sumo Logic or Splunk then you'll probably see
hundreds of errors indicating that a transaction could not connect to a remote
server. Some of these will be the result of network problems; some won'’t even be
your services, but remote HTTP calls to third party services like shipping, billing or
fraud detection. During peak periods you can expect to see many more of these, not
just because your site is experiencing high demand, but because these other remote
services and even the entire network are saturated. The problem for your business
is that if server connectivity issues take too long (typically 30-45 seconds) they can

cause important transactions to time out. Here’s an example of a transaction that
timed out after it was unable to connect to a server:

Call Drill Down. Exe Time: 20998 ms Timestamp: 10/14/13 2:59:38 PM BT ‘s = SUID: ebf1f621-898d-40ec-bd8f-7a87e031ad4c3
SUMMARY
SQL CALLS
Transaction Timsstamp 10/14/13 2:59:38 PM (server) 10/14/13 2:58:38 PM (agent)
HTTP PARAMS :
Summary [Emor] - WebException: Unable to connect to the remate server -
COOKIES Error - System.Net.WebException: Unable to connect to the remote server ---> System.Net.Socket: ion: A
connection attempt failed because the connected party did not properly respond after a period of time, or

USER DATA ion failed because host has failed to respond s

at System.Net Sockets.Socket.D i i
ERROR DETAILS at System.Net Sockets.Socket.InternalCennect{EndPoint remoteEP)

at System.Net ServicePoint. ilure, Socket s4, Socket s6, Sockets socket]
HARDWARE / MEM IPAddress& address, state, Int32 timeout, i i

- End of inner exception stack trace ---
NODE PROBLEMS at System.Net.Hitp! TransportContext& context)

at System.Net.
ADDITIONAL DATA at System.Web.Services.Protocols. 1ttpCli . (String . Object[])

at = m— ——memic. 5 i i 32 posCode, DateTime lastUpdate Timestamp)

at Me——iectismmin. caders.Po oader. 32 nodeld, DateTime

lastUpdate)
at P ————. caders.Po: oader.GetC: Version()
cl | : -DA 250L101-= 5-0-1-0
Business Transaction [

If you see a lot of these errors occurring in your system, you should investigate the
issue to determine where the problem is occurring and troubleshoot the problem.
In addition, you should ensure that your application uses short timeouts with retry
logic to make your app more resilient to network issues.

Top 10 reasons your eCommerce site will fail during peak periods 5

APPDYNAMICS

5. Garbage collection
Caches are an easy way to speed up application performance. The closer the data
is to the application logic (in memory) the faster it will execute. It is therefore no
surprise that as memory has gotten bigger and cheaper, most companies have
adopted some form of in-memory caching to cut down on database access for
frequently used results. This means that average heap size is much larger than
before; 64GB and 128GB heaps are not uncommon. As a result, garbage collection
affects end users more than before. In order to reduce the impact and frequency
of garbage collection cycles, you must be efficient and careful in maintaining cache
data and in creating or persisting user objects. Just because you have
GBs of memory to play with doesn’t mean you can be lazy in how you create,
maintain and destroy objects. Here are a few screenshots demonstrating how
garbage collection can kill your eCommerce application:
] 1 ’ Ch 4. I "
| Ecomm rpp 4.2 1 28 2
§ Ecomm Aep 16 1 : 2 207
 Ecom App 5.0 |- B 436 3 5588
i AR 63.3 1 88 2269
i App 545 - 1 3z 4
[e a3.4 - 1 112 4
[] App 831 - 1 12 i
[] Pop 2 1 29 2
[] Ppp 2.0 1 2 2174
[] R 240 1 i 212
| Ecommies hpp 833 - 5 4874 5 4379
| Econmas rgp 833 - 1 3
| Econmae App 23 1 30
l Ecomm; App 84,6 |- 1 2 2242
| Econmiessm Agp 66.3 17 12887 7 10415
| "B 837 - 1 3 2 2264
§ Ecomm "op 544 1 15 2 2284
| Econm App 837 1 100 3 234
 Econm App 525 - 1 83 28 217
| Econmas op 53.2 |- 1 14] 223
(letric Trea || Lh | Log. Piot Poincs ﬂ i&uln.{' nare | EpotOan r % o O Refresh T ONTA2 A 200PM Ad Te omirn? 4 MmPM v
P il %CPU_SMEM TIME+ COMMAND
¥
1000030 J"
10000
Heap Limit
%0 \ w’A > & o O o & O & o D—6 o O
1w
1100 P ¥ :0‘ ™ 4 26 (])CG‘II"W L} C\; L] C\'l L] i:;\“: m ',:'\.QH’I
Time
| Actscaion Ierasniciune Peromanceliepl ndvcusl NadesE commss =1 MiGerbege Cole:taniGC Tine Set Per M (ma) | Db || Mie [M @
[e tacmion 11amric i Fra s i 6 P € e s RomouscanC UMDy | owe [min [N 3
- Acphcator |efrasTuciume Peromancald el ndne ol Nodos E comees VM Mermon [Heap Used % Ed Oos || Min || Max K]
- Bomrmas Tanaeebun Podurnare D Trarme o P ps| Sea o e vl Hobes | o & o o gm Frsgon Ters e |] oea [Min [] sdme Q
[Bosoems Trasmacion Fertorn ance Business Trarsaction |Apol Sea-chiled vidual Nates I conmes Cola cer Mirwte L] Oom || Min| | M V]

Top 10 reasons your eCommerce site will fail during peak periods 6

APPDYNAMICS

6. Transactions with high CPU burn

It’s no secret that inefficient application logic will require more CPU cycles than
efficient logic. In practice, however, it’s much easier to speed up your application
by buying more servers than by going back and optimizing your code. This practice,
while it works well in the short term, is not a long-term solution to the problem.
Adding capacity masks inefficient code temporarily, but if you have transactions
that hog or burn CPU they will cause problems for you again as your application
grows. It’s better (and cheaper) to address these problems as they arise rather than
to throw money at additional infrastructure your application doesn’t need.

Nams

o
I
-

9000000000 ;:

‘Search

The above screenshot shows the transactions in an eCommerce site sorted by the
CPU time used. Monitoring the CPU usage of your business transactions is a good
way to determine whether or not your application really needs new infrastructure,
or if you simply need to optimize some transactions that burn a lot of CPU time.

Top 10 reasons your eCommerce site will fail during peak periods 7

APPDYNAMICS

7. Slow (or unavailable) 3rd party web services

If your eCommerce application is built around a distributed service oriented
architecture then your application has multiple points of failure. This can make it
difficult to identify and troubleshoot a problem, especially if some of the services
that your application relies on are owned and operated by third parties. For
example, most payment and credit card authorization services are provided by
third party vendors like PayPal, Stripe or Braintree. If these services are slow or
unavailable then it’s impossible for checkout transactions to complete. You need
to monitor these services religiously so that when problems occur you can rapidly
identify them and work with the service provider to troubleshoot them.

Transactio 3d3-7199-4a22-b255-B6773ed5079d

USER EXPERIENCE EXECUTION TIME TIMESTAMP BUSINESS TRANSACTION REQUEST GUID
o ERROR 23553 ms 01/14/13 10:42:17 AM Checkout BE3673d3-T199-4a22-b255-86773ed507od

Transaction Snapshot Flow Map
71ms (0.3 %)

HTTP Oms(0 %)~ .
7 IDBC 17Sms(0T%) -

1618ms (6.9%) ¥
) JDBC 1 ms(0 %)

START — HTTP 21705 ms(92.2 %)
_———

HTTP)

http:/ipayflowpro paypal com:443

Call Drill Down, Exe Ti

SUMMARY Execution Time: 23553 ms. Node s, Timestamp: 0144113 10:42:17 AM
CALL GRAPH Sot as Root s
S EEoT Name Time {ms) Exit Cs
v [l struts 1.x Request Pracessor processictionPerform W mejsell) | 09
SOL GALLS
¥ [l = e s11uts action EPHTTPS DACexecute 25 Oms(self) | 0%
HTTP PARAME
¥ [l = b struts action EPDAexecute-d4 Oms(sely | ©
COOKIES v [l struts Action - checkgut- =submit 710 Oms(self) | 0%
USER DATA vHl- = business. action AbstractBA:doExecute: 51 Oms(self) | 03
ERROR DETAILS ~@ 1 business. aclion RecalculateCartBA: execute:43 216 ms (otal) 1B% | WTTR (7
HARDWARE / MEM vH- === business, action CheckOUBA e xacute Oms(sel) | 0%
NODE PROBLEMS 8| =il HibemateUlilbeginTransaction:23 11 ms {total) (]
> c st business. action. Check QutBA buildCartileminventoryHash: 1640 ms (total) 0%
ADDITIONAL DATA 2} iz : sk ey 11 ms (total)
+H- s business. action. CheckDUtBA-isCreditCardApproved: 1807 Oms(sel) | 0%
¥ [l === tilling service BillingService authorize:283 Oms(seif) | 0%
¥ [l === tilling sorvice payfowpro PayF lowProBillingSarviceAdaptar:authoriza: 18 oms(sely | 0°
== billing.service payflowpro PayFlawProBillingService:autharize 108 Oms(self) | 0%
== billing service payflowpro PayFlowProBilling Service authorize: 157 Ome(self) | 0%
A E Billing.service payllowpro.PayFlowPraBillingService sendVerisignRequest 401 Oms(self) | 0%
w [l coyesl payliow PayfowhP L submitTransaction Oms(self)y | ©
v Blpaypat paytiow.gi Omsiself) | 0%
» @ caypal paytion.ab 118 ms (total) 05°

0 ms (seT

Bl vayeal payfiow g

15021 ms {self)

3| payllow.g:a

» @l reyeal paylionms 996 ms (total) | 425

» [l caveal payiion.ab 115 ms (total) (X

» [l eaypal payfion b b 6552 ms total) EBTE% | MTTP (2
» [l ====tilling sarvica BillingSarvice:voidAuth:326 269 ms (total) 11% | HTTP (2

Top 10 reasons your eCommerce site will fail during peak periods 8

APPDYNAMICS

8. Recursive code (excessive method invocations)

Many eCommerce applications request data from multiple sources (caches,
databases, web services) at the same time. Each round trip call is expensive and
may involve network time along the way, so it’s important to minimize the number
of times a transaction makes calls to these external resources. One common
mistake that causes performance issues is when a transaction calls the database
multiple times (sometimes in a loop) when it could use a single query. In the
screenshot below you see an example of a search transaction that

made 13,000 database calls.

SUMMARY The Requast Snapshats taken in a diagnostic session will cantain tha SOL eall summary. Request Snapshats for individual siow and ermnecus requasts will contain only
Al oRAR 1t query's count exceeds 1 then the time bahan represents the tetal time spent making that query
R Query Type Query A, Time fms) Gt
U e B overy SELECT T1.IMAGEZ, T1 IMAGE1, T1 LANGUAGE_ID, T1.0ID, T1.SEQUENCE, T1 ATTRIBUTE_ID, T1HA 1.03 1302
st B ouery oaPub from xcatenta 1712 and fimcenter_id = (select fimcen 1,08 1731
Hifsfnanans B ouery T1IMAGE!, T LANGL. D, T1.0ID, T1.SEQUENCE, T1 ATTRIBUTE_ID, T1HA 1.03 1887
tolties B ouery SELECT T1.FIELDY, T1 FLAGS, T1.MINIAUMOUANTITY, T1LASTUPDATE, T1 ENDDATE, T1.TRADEPO 1.04 1579
UBEROATA W auery SELECT T1.CATENTRY_ID, T1.CURRENCY, T1 LISTPRICE, T1.01D, T1.0PTCOUNTER FROM LISTPRIC 1.06 1851
oLl B cuery SELECT T1.PRICE, T1.CURRENCY, T1.OFFER_ID, T1.COMPAREPRICE, T1.0PTCOUNTER FROM OFI 0.0 1578
HARDWARE | MEM B ouer SELECT T1.NOMINALQUANTITY, T1.LENGTH, T1 QUANTITYMEASURE T1WEIGHT, T1HEIGHT, T1.5 1 1551
R EROE EMG B overy SELECT T1.CATENTRY_ID_CHILD,T1.CATENTRY_ID_PARENT FROM CATENTREL T1 WHERE T1.CATI 0.84 1551
ADDITIONAL DATA B ouery SELECT T1.MAME, T1AUXDESCRIPTIONZ, T1AVAILABILITYDATE, T1 KEVWORD, T1AUXDESCRIPT 1 38
@ ouvery SELECT T1.IMAGEZ, T1IMAGE1, T1.LANGUAGE _ID, T1.0ID, T1.SEQUENCE, T1ATTRIBUTE_ID, T1.HA 1.08 16
B ey 2 X | SELECT T1.DESCRIPTIONZ, T1.DESCRIPTION, T1.SEQUENCE, T1ATTRIBUTE_ID, T1.CATENTRY 1.05

Even though each database call was relatively fast (a matter of milliseconds) the
cumulative effect on response time was enormous: the transaction took almost
fifteen seconds to execute, which is a long time for an impatient consumer to wait.
Consolidating database calls, using eager fetching, and being very careful about how
you use loops can help to prevent this problem from occurring this holiday season.

Top 10 reasons your eCommerce site will fail during peak periods 9

APPDYNAMICS

9. Configuration changes

As much as we’d like to think that production environments are locked down

by the change control process, they aren’t. Accidents happen, humans make
mistakes and hot fixes are occasionally applied at two in the morning. Application
server configuration can be very sensitive, so being able to audit, report on and
compare configuration changes across your application is critical to troubleshooting
configuration-related issues in production.

In the screenshot below you can see an example of a configuration change made
in a production environment. By collecting the details around each configuration
change, you can quickly discover what changes were made and how they
affected performance.

Application Canfiguration Change

Summary Details Commaents (0)
Added variable 1 CONSOLE=/dev/console
Added varable 2 JAavA HOME=/home'singulamtypdk1.6.0_10
Added variabbs 3 pravious=N
Added variable 4 RUMNMLEVEL=3
Added variable 5 PREVLEVEL=H
Added variable & INIT_VERSION=sysvinil-2 B&
Avdlded variable runlevel=3
Modified varsable 1 TERME=xtarm (changed to) TERM=hnux

Top 10 reasons your eCommerce site will fail during peak periods 10

APPDYNAMICS

Try it FREE at

appdynamics.com

AppDynamics, Inc.
appdynamics.com

10. Out of stock exception

Sometimes what appears to be a performance issue in your application is actually
a business problem. Running out of merchandise on Black Friday, for example,
would anger end users and ultimately cost the business some money. Application
performance management can be used to monitor business metrics like revenue
and the items left in stock, however, to help you make better business decisions
and prepare for events like Black Friday and Cyber Monday. Here is an example of
a dashboard used by an eCommerce organization to monitor revenue through their
web application and its relationship with performance.

$64,499 per min

Application

/| $11,987 per min |

Application
Errors

Conclusion

Every eCommerce application is different, but the problems they experience during
the holiday shopping season are usually pretty similar. The surge in traffic often
surfaces performance issues and bottlenecks that have existed in the application
for some time, and the solution is not to simply restart the server or throw more
infrastructure at it. In order to find real, long-term solutions to some of these
performance issues, you must take a good hard look at your application and work
through some of the problems long before your sales roll around. With a little
preparation and some powerful monitoring tools you can ensure that both the
application and the business will have a successful holiday season.

About AppDynamics

AppDynamics is the next-generation application performance management solution
that simplifies the management of complex, business-critical apps. No one can
stand slow applications—not IT Ops and Dev teams, not the CIO, and definitely not
end users. With AppDynamics, no one has to tolerate slow performing apps ever
again. Visit us at appdynamics.com.

Copyright © 2014 AppDynamics, Inc. All rights reserved. The term
APPDYNAMICS and any logos of AppDynamics are trademarked or
registered trademarks of AppDynamics, Inc.

