
appdynamics.com 1

INSIGHT SERIES
Microservices

Managing microservices complexity
with AppDynamics

What is microservice architecture?

Microservices is a growing trend where complex applications are being broken into
smaller services (hence microservices). While this is not unlike service-oriented
architecture, it’s being done for a different reason. The movement away from
waterfall development and ITIL operations towards agile development and DevOps
are causing siloed teams to be broken apart.

These new smaller teams, usually organized around business capability, take
complete responsibility for software development and work together on an entire
service lifecycle (dev, test, ops). In line with Conway’s law*, this results in developing
a single application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms. They release independently from
one another, yet these microservices must work together to deliver the application
functionality. This adds a lot of complexity, especially as teams use various
technologies to deliver their independent services.

Microservices speed up the delivery of software features. They allow for a
rapid iteration cycle, allowing the software to flex to business changes and
experimentation. This ultimately yields a product which incrementally changes and
is improved over time, versus monolithic software which focuses on large and heavy
software releases.

Ideally this splitting up into services is organized around business capability. Such
services take a broad-stack implementation of software for that business area,
including user-interface, persistent storage, and any external collaborations.
Consequently, the teams are cross-functional, including the full range of skills
required for development: user experience, database, and project management.

Challenges in managing microservices-based applications

The days of Java- and Oracle-based applications are no longer; microservices are
built with a large degree of variability. Today’s microservices are built with multiple
languages, many backends, and a large number of Web service-based API calls, each
of which must perform well for the service to deliver the required data. Monitoring
the end-to-end performance and latency of business transactions made out of
microservices, usually communicating asynchronously, becomes a difficult task. This
complexity and diversity creates unique challenges with these new architectures.

KEY FEATURES

– Core APM: Transaction-tracing across
multiple languages and Web services
calls (which are the glue of the
microservices architecture)

– EUM: Measuring the end-user
experience from the user through
components

– Database: Monitoring the large degree
of variable backends

– Analytics: To handle custom logs and
transactional data

“Microservices are simpler,
developers get more
productive, and systems
can be scaled quickly and
precisely.”

* Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure. – Melvyn Conway, 1967

http://www.appdynamics.com

appdynamics.com 2Copyright © 2015 AppDynamics, Inc. All rights reserved. The term APPDYNAMICS and any
logos of AppDynamics are trademarked or registered trademarks of AppDynamics, Inc.

Try it FREE at appdynamics.com

Business impact of suboptimal microservice management

Microservices are being implemented for agility between the business, IT, and other
groups like marketing to more quickly drive feedback into the software lifecycle.
Each service typically chooses its own language, data store, and associated
technology to meet the demands of the service that must be delivered. The services
are all API-driven, allowing for reuse of the services, which can be constructed
into many different applications. This enables the business to better leverage its
data and capabilities easily into more distinct products and offerings. This level
of complexity is far beyond what occurs in today’s already complex applications.
Isolating issues and enabling teams to be responsible for their specific services is
impossible without the right level of visibility and consistency across the various
implemented technologies.

AppDynamics provides comprehensive support for microservices

All of these services are owned by different teams, and are built on different
languages with different backends, yet they must all work together properly
to deliver a seamless application to the user. AppDynamics’ breadth and depth
of technology support allows us to measure the business transaction, made of
multiple microservices usually communicating asynchronously, from the user
through each service, and baseline each metric collected. This ensures that each
service and team can independently become operationally proficient, along with
allowing their business to measure and understand each application and each user
interaction within the application.

Figure: Visualizing microservices with AppDynamics

KEY BENEFITS

– Service endpoint views allow teams
to measure specific microservices
performance

– Transaction tracing and topology
allow teams to work together to
resolve issues

– Support of modern languages and an
open-ended platform allow for easier
metric and log ingestion across any
technology selected by each team

http://www.appdynamics.com
http://www.appdynamics.com

