
An AppDynamics Business White Paper

The biggest difference between cloud-based
applications and the applications running in your data
center is scalability. The cloud offers scalability on
demand, allowing you to expand and contract your
application as load fluctuates. This scalability is what
makes the cloud appealing, but it can’t be achieved
by simply lifting your existing application to the cloud.
In order to take advantage of what the cloud has to
offer, you need to re-architect your application around
scalability. In this paper we’ll look at what a highly
scalable cloud-based application might look like and
what strategies you can use to design an application
for the cloud.

Architecting for the cloud
designing for scalability in
cloud-based applications

Architecting for the cloud sesigning for salability in cloud-based applications 2

Sample architecture of a cloud-based application
Designing an application for the cloud often requires re-architecting your
application around scalability. The figure below shows what the architecture of a
highly scalable cloud-based application might look like.

The Client Tier: The client tier contains user interfaces for your target platforms,
which may include a web-based user interface, a mobile user interface, or even a
thick client user interface. There will typically be a web application that performs
actions such as user management, session management, and page construction. But
for the rest of the interactions the client makes RESTful service calls into the server.

Services: The server is composed of both caching services, from which the clients
read data, that host the most recently known good state of all of the systems of
record, and aggregate services that interact directly with the systems of record for
destructive operations (operations that change the state of the systems of record).

Systems of Record: The systems of record are your domain-specific servers that
drive your business functions. These may include user management CRM systems,
purchasing systems, reservation systems, and so forth. While these can be new
systems in the application you’re building, they are most likely legacy systems with
which your application needs to interact. The aggregate services are responsible
for abstracting your application from the peculiarities of the systems of record and
providing a consistent front-end for your application.

Figure 1. Sample Cloud-Based Architecture

Architecting for the cloud sesigning for salability in cloud-based applications 3

ESB: When systems of record change data, such as by creating a new purchase
order, a user “liking” an item, or a user purchasing an airline ticket, the system
of record raises an event to a topic. This is where the idea of an event-driven
architecture (EDA) comes to the forefront of your application: when the system
of record makes a change that other systems may be interested in, it raises an
event, and any system interested in that system of record listens for changes and
responds accordingly. This is also the reason for using topics rather than using
queues: queues support point-to-point messaging whereas topics support publish-
subscribe messaging/eventing. If you don’t know who all of your subscribers
are when building your application (which you shouldn’t, according to EDA) then
publishing to a topic means that anyone can later integrate with your application by
subscribing to your topic.

Whenever interfacing with legacy systems, it is desirable to shield the legacy
system from load. Therefore, we implement a caching system that maintains the
currently known good state of all of the systems of record. And this caching system
utilizes the EDA paradigm to listen to changes in the systems of record and update
the versions of the data it hosts to match the data in the systems of record. This is a
powerful strategy, but it also changes the consistency model from being consistent
to being eventually consistent. To illustrate what this means, consider posting an
update on your favorite social media site: you may see it immediately, but it may
take a few seconds or even a couple minutes before your friends see it. The data
will eventually be consistent, but there will be times when the data you see and the
data your friends see doesn’t match. If you can tolerate this type consistency then
you can reap huge scalability benefits.

NoSQL: Finally, there are many storage options available, but if your application
needs to store a huge amount of data it is far easier to scale by using a NoSQL
document store. There are various NoSQL document stores, and the one you choose
will match the nature of your data. For example, MongoDB is good for storing
searchable documents, Neo4J is good at storing highly inter-related data, and
Cassandra is good at storing key/value pairs. I typically also recommend some form
of search index, such as Solr, to accelerate queries to frequently accessed data.

Let’s begin our deep-dive investigation into this architecture by reviewing service-
oriented architectures and REST.

REpresentational State Transfer (REST)
The best pattern for dividing an application into tiers is to use a service-oriented
architecture (SOA). There are two main options for this, SOAP and REST. There are
many reasons to use each protocol that I won’t go into here, but for our purposes
REST is the better choice because it is more scalable.

Architecting for the cloud sesigning for salability in cloud-based applications 4

REST was defined in 2000 by Roy Fielding in his doctoral dissertation and is an
architectural style that models elements as a distributed hypermedia system that
rides on top of HTTP. Rather than thinking about services and service interfaces,
REST defines its interface in terms of resources, and services define how we interact
with these resources. HTTP serves as the foundation for RESTful interactions
and RESTful services use the HTTP verbs to interact with resources, which are
summarized as follows:

 – GET: retrieve a resource
 – POST: create a resource
 – PUT: update a resource
 – PATCH: partially update a resource
 – DELETE: delete a resource
 – HEAD: does this resource exist OR has it changed?
 – OPTIONS: what HTTP verbs can I use with this resource

For example, I might create an Order using a POST, retrieve an Order using a GET,
change the product type of the Order using a PATCH, replace the entire Order using
a PUT, delete an Order using a DELETE, send a version (passing the version as an
Entity Tag or eTag) to see if an Order has changed using a HEAD, and discover
permissible Order operations using OPTIONS. The point is that the Order resource is
well defined and then the HTTP verbs are used to manipulate that resource.

In addition to keeping application resources and interactions clean, using the HTTP
verbs can greatly enhance performance. Specifically, if you define a time-to-live
(TTL) on your resources, then HTTP GETs can be cached by the client or by an HTTP
cache, which offloads the server from constantly rebuilding the same resource.

REST defines three maturity levels, affectionately known as the Richardson Maturity
Model (because it was developed by Leonard Richardson):

1. Define resources

2. Properly use the HTTP verbs

3. Hypermedia Controls

Thus far we have reviewed levels 1 and 2, but what really makes REST powerful is
level 3. Hypermedia controls allow resources to define business-specific operations
or “next states” for resources. So, as a consumer of a service, you can automatically
discover what you can do with the resources. Making resources self-documenting
enables you to more easily partition your application into reusable components (and
hence makes it easier to divide your application into tiers).

Sideline: you may have heard the acronym HATEOAS, which stands for Hypermedia as
the Engine of Application State. HATEOAS is the principle that clients can interact with
an application entirely through the hypermedia links that the application provides. This
is essentially the formalization of level 3 of the Richardson Maturity Model.

Architecting for the cloud sesigning for salability in cloud-based applications 5

RESTful resources maintain their own state so RESTful web services (the operations
that manipulate RESTful resources) can remain stateless. Stateless-ness is a core
requirement of scalability because it means that any service instance can respond
to any request. Thus, if you need more capacity on any service tier, you can add
additional virtual machines to that tier to distribute the load. To illustrate why this is
important, let’s consider a counter-example: the behavior of stateful servers. When
a server is stateful then it maintains some client state, which means that subsequent
requests by a client to that server need to be sent to that specific server instance. If
that tier becomes overloaded then adding new server instances to the tier may help
new client requests, but will not help existing client requests because the load cannot
be easily redistributed.

Furthermore, the resiliency requirements of stateful servers hinder scalability
because of fail-over options. What happens if the server to which your client is
connected goes down? As an application architect, you want to ensure that client
state is not lost, so how to we gracefully fail-over to another server instance? The
answer is that we need to replicate client state across multiple server instances (or at
least one other instance) and then define a fail-over strategy so that the application
automatically redirects client traffic to the failed-over server. The replication
overhead and network chatter between replicated servers means that no matter how
optimal the implementation, scalability can never be linear with this approach.

Stateless servers do not suffer from this limitation, which is another benefit to
embracing a RESTful architecture. REST is the first step in defining a cloud-based
scalable architecture. The next step is creating an event-driven architecture.

Event-Driven Architecture
An event-Driven Architecture (EDA) is one of the keys to scalability. The core concept
underlying EDA is the idea that systems notify other systems of changes using
events and those events are delivered asynchronously. EDA promotes loose coupling
because the producer of an event does not need to know anything about its various
subscribers – it defines the structure of its events and publishes them at appropriate
times. Consumers can be added at any point: they subscribe to receive notifications
and process them when they arrive. This is illustrated in figure 2.

Figure 2. Event-Driven Architecture

Architecting for the cloud sesigning for salability in cloud-based applications 6

Aside from being a good strategy for loosely coupling systems, a key factor that
makes EDA scalable is its asynchronous communication paradigm. Asynchronous
communication means that consumers process events as they are able to: if an
application becomes saturated by excessive load, an asynchronous application may
slow down as events back up, but it will not go down. Consider processing status
updates on a social media site: as load increases the events may back up, but the
consumers only consume them at the rate they can. So under heavy load you may
have to wait five minutes to learn that I’m at the laundromat, but that’s hardly the
end of the world.

Additionally, EDA is a poster child for the cloud because as events back up, it is
easy to start up additional event listeners to process the backed up events. Event
listeners can leverage the elasticity that the cloud provides.

EDA is the architecture, but it does not dictate the implementation. Most often EDA is
implemented on top of an enterprise service bus (ESB) and uses topics as the means
of communication. As mentioned earlier, topics are preferred over queues because
they operate in a publish-subscribe manner. A message producer publishes an event
and anyone interested in that event can process it. If we used queues then every time
a new subscriber was added, the producer would need to be updated to publish to
the new consumer – this is an example of tight coupling, which we want to avoid.

ESBs are the most common choice to implement EDA, but they are not the only
choice. In practice, while ESBs are advanced and have been developed by smart
programmers, they are often difficult to maintain and can cause performance
bottlenecks, so some architects have searched back through Fieldings’ RESTful
dissertation to discover the potential for using Atom feeds for event publishing.
In this model, when something meaningful happens in a component, instead of
publishing a message to a topic, the component publishes the message to an Atom
feed. Atom is an HTTP-based replacement for RSS (Really Simple Syndication)
designed to publish things like newsfeeds, but because of its HTTP-based
implementation it is very RESTful in nature. When using Atom as a replacement for
an ESB, instead of subscribing to topics, a consumer instead polls the component’s
Atom feed. It then processes messages at its own rate and returns for more
messages when it is ready.

Because there are typically not too many subscribers to a single component’s
Atom feed, the resultant load is not significant and each consumer controls its own
capacity. Additionally, if a consumer goes down there is no concern that it has lost
messages because it simply continues from where it left off. Finally, Atom feeds
provide a source of history for a component that would have otherwise required
quite a bit of effort to implement.

Architecting for the cloud sesigning for salability in cloud-based applications 7

Atom is not a panacea, however. If your application is sensitive to latency then Atom
is not a good choice. An ESB delivers a message as soon as it is ready but the Atom
feed is subject to the polling interval of its consumers. Additionally, when there are
components that do not generate many messages, there is the wasted overhead
of continually polling the component. If latency is not an issue for your application,
using an Atom feed to facilitate EDA is a simple, elegant, and fault-tolerant solution.

Figure 3 shows a graphical comparison of using an ESB and using an Atom Feed to
implement an EDA application.

Deploying to the cloud
This paper has presented an overview of a cloud-based architecture and provided
a cursory look at REST and EDA. Now let’s review how such an application can be
deployed to and leverage the power of the cloud.

Figure 3. ESB versus Atom as an EDA Implementation

Architecting for the cloud sesigning for salability in cloud-based applications 8

Deploying RESTful services
RESTful web services, or the operations that manage RESTful resources, are
deployed to a web container and should be placed in front of the data store that
contains their data. These web services are themselves stateless and only reflect
the state of the underlying data they expose, so you are able to use as many
instances of these servers as you need. In a cloud-based deployment, start enough
server instances to handle your normal load and then configure the elasticity of
those services so that new server instances are added as these services become
saturated and the number of server instances is reduced when load returns to
normal. The best indicator of saturation is the response time of the services,
although system resources such as CPU, physical memory, and VM memory are
good indicators to monitor as well. As you are scaling these services, always be
cognizant of the performance of the underlying data stores that the services are
calling and do not bring those data stores to their knees.

Figure 4 shows that the services that interact with Document Store 1 can be
deployed separately, and thus scaled independently, from the services that interact
with Document Store 2. If Service Tier 1 needs more capacity then add more server
instances to Service Tier 1 and then distribute load to the new servers.

Figure 4. Scaling RESTful tiers

AppDynamics, Inc.
www.appdynamics.com

Copyright © 2014 AppDynamics, Inc. All rights reserved. The term
APPDYNAMICS and any logos of AppDynamics are trademarked or
registered trademarks of AppDynamics, Inc.

Try it FREE at
www.appdynamics.com

Deploying an ESB
The choice of whether or not to use an ESB will dictate the EDA requirements for
your cloud-based deployment. If you do opt for an ESB, consider partitioning the
ESB based on function so that excessive load on one segment does not take down
other segments. This segmentation is shown in figure 5.

The importance of segmentation is to isolate the load generated by System 1 from
the load generated by System 2. Or stated another way, if System 1 generates
enough load to slow down the ESB, it will slow down its own segment, but not
System 2’s segment, which is running on its own hardware. In our initial deployment
we had all of our systems publishing to a single segment, which exhibited just this
behavior! Additionally, with segmentations, you are able to scale each segment
independently by adding multiple servers to that segment (if your ESB vendor
supports this).

Conclusion
Cloud-based applications are different from traditional applications because they
have different scalability requirements. Namely, cloud-based applications must
be resilient enough to handle servers coming and going at will, must be loosely-
coupled, must be as stateless as possible, must expect and plan for failure, and
must be able to scale from a handful of server to tens of thousands of servers.

There is no single correct architecture for cloud-based applications, but this paper
presented an architecture that has proven successful in practice making use of
RESTful services and an event-driven architecture. While there is much, much more
you can do with the architecture of your cloud application, REST and EDA are the
basic tools you’ll need to build a scalable application in the cloud.

Figure 5. ESB Segmentation

