
An AppDynamics Business White Paper

It may be that developers and operations work at the
same company, but historically they have had different
goals, different strategies, and different ways of measuring
success. Developers are interested in writing code that is
designed according to the best design patterns, that is high
performing and scalable, and that is extensible enough
to allow them to quickly release new features to satisfy
business requirements. Development measures success by
code quality tests, performance and load tests, and the rate
at which they can release new features. Operations, on the
other hand, is concerned with ensuring that applications
are highly available, that outages are infrequent, that they
are best utilizing their physical and virtual environments,
and that the Mean Time To Resolution (MTTR) of outages is
short. Operations are responsible for the infrastructure and
ensuring that applications are running and available - and
their success is measured as such.

Bringing development and
operations together with
real-time business metrics

Bringing development and operations together with real-time business metrics 2

So while the business has a single goal, such as increasing profitability or helping
the most people, and both development and operations have their roles in this goal,
it is wholly possible for development and operations to be individually successful
but for the organization to fail. It would be far better if we were able to measure
the success of the company and use that as a gauge to assess the effectiveness of
development and operations. For example, if we are able to release new features
weekly, is the effect positive or negative on the performance of the company? If
we add an additional “9” to our uptime, how does that affect the bottom-line? We
certainly need to measure the effectiveness of individual groups in a company,
but that measurement should be combined with real-time business intelligence to
determine the health of the company as a whole.

This paper explores the concept of measuring business metrics in real-time so that
you can accurately assess the performance of the company whilst also effectively
managing the performance of the application and infrastructure. The goal is to
assess the impact of development and operational initiatives against business
metrics to determine the overall affect of those initiatives. From this information
you can answer the question of whether or not a particular initiative is positively
affecting the business.

Business metrics
What constitutes a business metric and how to we find them? In short, a business
metric is a measure of something important to the health of your business. If you
are selling products on a website then metrics such as the number of orders placed
per hour and the number of dollars earned per hour would be good businesses
metrics. If you are tracking an accounts payable system or another type of
accounting software then you might want to capture the number of dollars moved
between accounts per hour. The point is that it should be possible to track and
quantify the financial impact of your online application and measure that financial
impact along side other operational metrics so that you can accurately assess,
not only the health of your application environments, but also the health of the
company as a whole.

Consider the effect of introducing added efficiency into your development
organization so that you can reliably release new versions of your key applications
weekly. Does this have a positive or negative impact on your business? How do
you know? We can assume that shorter release cycles enable you to deliver new
features to your customers more quickly, which fosters loyalty and improves the
user experience, but has it increased the number of orders or the bottom-line?
Are users able to be up sold additional products? Are they able to accomplish their
businesses transactions in less time? The only way that you will know is to define
the business metrics that impact your company, measure them, and then analyze
them to determine the impact of changes on these businesses metrics.

If we add an additional
“9” to our uptime, how
does that affect the
bottom-line?

Bringing development and operations together with real-time business metrics 3

On the operational side, do you know how much an application slowdown, or
outage has cost you? What is the impact of increasing availability from 99% uptime
to 99.9% uptime (see figure 1 for more information)? If operations is able to reduce
their Mean Time To Resolution from an hour to 30 minutes, how does that affect
the business? Is it worth adding additional unused capacity to your environment
in the name of resiliency? Operational goals should likewise be tracked against
businesses metrics so that you can quantity the impact of operational initiatives.

Figure 1. The downtime permitted by various percentages of application availability

Because operations and development see the world differently, we can help align
their individual views of success and failure by assessing success and failure using
a common set of metrics. If they share the goal of increasing revenue, optimizing
the amount of time users spend accomplishing their tasks, or even helping more
users find the closest food bank, then they can share a common language, which
encourages better collaboration. The key task is then to identify the core metrics
that affect your business, capture them, analyze them in real time, and report on
them to your operations and development teams so they can better understand the
business impacts of their work. If we observe that cutting release cycles down from
monthly to weekly positively impacts business metrics then we know it is a good
idea, but if the effects are negative then we have to ask the question of whether or
not it is worth the additional effort.

Availability %
Downtime per
year

Downtime
per month*

Downtime
per week

90% (“one nine”) 36.5 days 72 hours 16.8 hours

95% 18.25 days 36 hours 8.4 hours

97% 10.96 days 21.6 hours 5.04 hours

98% 7.30 days 14.4 hours 1.68 hours

99% (“two nines”) 3.65 days 7.20 hours 1.68 hours

99.5% 1.83 days 3.60 hours 50.4 minutes

99.8% 17.52 hours 86.23 minutes 20.16 minutes

99.9% (“three nines”) 8.76 days 43.8 hours 10.1 hours

99.95% 4.38 days 21.56 hours 5.04 minutes

99.99% (“four nines”) 52.56 hours 4.32 minutes 1.01 minutes

99.995% 26.28 minutes 2.16 minutes 30.24 seconds

99.999% (“five nines”) 5.26 minutes 25.9 seconds 6.05 seconds

99.9999% (“six nines”) 31.5 seconds 2.59 seconds 0.605 seconds

99.99999% (“seven nines”) 3.15 seconds 0.259 seconds 0.0605 seconds

What is the impact of
increasing availability
from 99% uptime to
99.9% uptime?

Bringing development and operations together with real-time business metrics 4

Real-time analysis
You may have noticed that I slipped in the word “real-time” into the analysis
statement above. Consider the release of a new version of your application that
inadvertently breaks your application’s checkout functionality for a certain browser.
It may be that you have very patient users that try multiple browsers but it is more
likely that you may lose sales. And at the very least, the rate of users checkouts will
decrease. From a high-level performance management and monitoring perspective,
you may not notice there is anything wrong until you receive a customer support
call because you still see all of your business transactions running and they are all
still responding within their acceptable thresholds. If your users do not alert you to
the problem then you’ll only notice a drop in revenue. What can we do to identify
this problem earlier so that we can avoid losing revenue?

Figure 2. An example that measures application behavior (response time and error rate) along
side the revenue the application is generating

The most direct way to isolate and alert the issue, would be to capture the
associated business metrics in real-time and compare them to the ‘normal’
expected behavior for these metrics. For example, if we typically see $5k per minute
of web sales generated on Monday lunch at 12:00pm and on this particular Monday
we only see $1k per minute then an automatic alert should be triggered to start
investigating the problem. The importance of analysis in “real-time” is that learning
about a problem such as this at the end of the month can result in a large and
unnecessary loss of revenue. Real-time analysis can be used to identify problems as
they happen.

There are however a number of challenges associated with capturing and
responding to real-time metrics, such as how to process and analyze the data in
a way that makes it immediately actionable. The key to this is example is to use
automatically generated baselines in order to determine normalcy, which is what we
will review in the next section.

The key task is then
to identify the core
metrics that affect
your business, capture
them, analyze them in
real time, and report on
them to your operations
and development teams
so they can better
understand the business
impacts of their work.

Bringing development and operations together with real-time business metrics 5

Business metric baselines
A key aspect to identifying when things are behaving abnormally is to first
determine what constitutes normalcy. While this may seem simple, in actuality it
is rather complex. We define “normalcy” with a baseline, which should be defined
based on your business’s specific user behavior. Baselines can be defined as follows:

• All time average (over a time period): If your application is used uniformly every
day and every hour of the day then you can define normalcy as the average value
for a specific period of time, such as the average response time for the past 30,
60, or 90 days

• Hour of day: If your application is used variably by the hour of day, for example
your see a spike in usage at 10am every day and dips in usage at 2am, then you
would want to define normalcy as the average value per hour for the current
hour of day

• Day of week: If your application has weekly variance, such as more usage on the
weekend, then you would want to define normalcy as hour of day on the specific
day of the week (compare Tuesday at 10am to the historic behavior for Tuesdays
at 10am)

• Day of month: If your application has monthly variance, such as a banking
application that might have spikes on the 15th and 30th of the month, then you
would want to define normalcy as the hour of day on the specific day of the
month (compare the 15th at 9am to previous month’s 15th at 9am)

After identifying the type of baseline that matches your business usage, the next
step is to capture your business metrics, compute your baselines, and analyze
current usage against the baselines.

Capturing business metrics
From where you will capture your business metrics is really dependent on your
application and how you model your solutions, but most likely you will have a
method or methods in your application that, at the lowest level, contain the data
you need to compute your business metric values. You can capture your business
metrics manually or through an automated process:

• Augment your application code to publish the metric values to a database, a log
file, or another service that you develop: the benefit to this approach is that you
best know your application and can identify what metrics you want to capture
so the effort is very targeted. The drawback is that it is invasive because you
need to update your application to capture business metrics and, if you want
to change them later, you need to re-release your code. Furthermore, you are
responsible for computing the baselines, analyzing the current behavior against
the appropriate baselines, displaying the behavior in a dashboard, and alerting to
variations from the baseline.

Bringing development and operations together with real-time business metrics 6

• Automated solution: if you have a performance management solution in place, it
would be far better to configure it to capture these metrics for you and to display
them along side performance metrics. The benefits to this approach are: you do
not need to change your source code to capture business metrics, new business
metrics can be captured without needing to redeploy your application, you can
correlate business metrics with performance metrics, and the performance
management solution can derive the baselines for you and compare the current
behavior to the appropriate baseline.

Regardless of where the business metrics come from, here are some suggestions
for good business metric candidates:

• Order or payment amounts: assuming that you have a method in your application
that is invoked with a payment amount, capture the amount from this method call

• Categorization: if you break payment amounts down by categories, e.g. VISA
customers versus American Express customers or premium versus standard
customers, then group your business metrics as such

• Number of orders: simply capturing the number of orders for a given time period
and comparing that value to your baseline can alert you to underlying problems;
this might be accomplished by counting the number of times a process order
method is invoked

Detecting abnormal behavior
At this point you have your baseline and you have your business metrics, so how do
you compare them? There are different strategies in determining when things have
gone astray:

• Fixed SLA: while you don’t need a baseline to analyze current behavior against a
fixed SLA, defining fixed SLAs is one way of detecting problems. In this strategy
you might determine that between Monday and Friday 10am-6pm you think it
would be abnormal if you saw less that $5K sales in any given hour. If your usage is
consistent then this strategy might be valid. The challenge in this strategy, however,
is that more subtle issues, such as a drop from $8K to $6K may not be detected
and, if your usage patterns are not uniform, then this may result in false positives.

• Percentages: you can choose to analyze the current value of a metric against
a percentage of a baseline. For example, you might determine abnormality to
be greater than or less than 20% of the baseline value. This strategy enables
you to work with variable values and different usage patterns, but the choice of
percentile does not necessarily account for the variance in usage data.

If your users do not
alert you to the problem
then you’ll only notice a
drop in revenue. What
can we do to identify
this problem earlier so
that we can avoid losing
revenue?

Bringing development and operations together with real-time business metrics 7

• Standard Deviation: probably the most accurate analysis for most data,
you canis to define thresholds that alert based off of a number of standard
deviations from the baseline mean value. In a normal distribution, 95% of all
values will fall within two standard deviations from the mean and 99% of all
values will fall within three standard deviations from the mean. Therefore
alerting when a value is two or three standard deviations from the mean is a
good indicator that things are abnormal. But this does not work for all data,
such as highly variable data.

Whatever strategy you use to detect abnormal behavior, the process is now:
capture business metrics and build a baseline that matches your usage patterns,
compare the real-time behavior of your application against the baseline, and if
your abnormality conditions are triggered then dive into your application and your
performance metrics to identify the root cause of the problem.

Bringing operations and development together
Once you have captured business metrics and have them available to report
against, it is time to complete the circle and integrate business metric goals into
operation and development goals. Now obviously we cannot task developers
with increasing sales or operations with increasing user loyalty, but we can define
specific development and operation goals targeted as improving these business
metrics. For example, we might task development with reducing the number
of pages required for a user to check out or to reduce the response time of the
checkout process, and then see whether or not that increases the number of
orders or even the user experience satisfaction rating. Likewise we might task
operations with making the environment more elastic (can scale up and scale
down to meet the user load) to (1) save hardware costs and (2) ensure that there
is enough capacity for the user load at peak times, and then compare the result of
that initiative to user satisfaction ratings.

The specific goals will be dependent on your business, but I hope you get the idea:
there are quantifiable business goals that can improve the overall health of your
business and you need to find a way to integrate those business goals into your
development and operation goals.

AppDynamics, Inc.
appdynamics.com

Copyright © 2014 AppDynamics, Inc. All rights reserved. The term
APPDYNAMICS and any logos of AppDynamics are trademarked or
registered trademarks of AppDynamics, Inc.

Try it FREE at
appdynamics.com

Conclusion
Any company that leverages technologies has two arms of its technical strategy:
development and operations. Development builds products, integrates solutions,
and in all other ways leverages technology to solve business problems. Operations
takestakesOperations take what development has built and makes it available to
the company’s customers in a highly available, high performance, and low cost way.
Both arms have the same goal: the success of the company, but they measure their
own individual success differently.

This paper suggests that companies should leverage the concept of real-time
business metrics to bridge this gap. A business metric is any important metric that
identifies the health of the company as a whole, such as the number of orders
placed or amount of revenue generated in an hour. Business metrics should be
captured in real-time, analyzed against a baseline tailored to the company’s usage
patterns, and alerts should be generated if things go wrong. Finally, business
metrics should be integrated into development and operation goals so that when
development or operation initiatives are employed, their efficacy can be assessed
by their impact on the business itself.

