
The Virtualization Practice 
 

White Paper: 

Managing Applications in Docker 
Containers 
 

Bernd Harzog 
Analyst – Virtualization and Cloud Performance Management 
 
October 2014 
 
 

 
 
Abstract 

 
Docker has captured the attention of the development and deployment community by delivering 

a container that abstracts an application and the libraries that the application depends upon 

from the underlying Linux operating system. 

This provides several advantages to teams building, testing, and then managing the deployment 

of Linux based applications in production. These include being able to keep a consistent set of 

application code and supporting libraries through the entire development lifecycle, being able to 

develop test and deploy on different distributions of Linux, being able to easily incrementally 

update the contents of a Docker container, being able to easily migrate containers from one 

execution environment (a private cloud) to another (perhaps a public cloud), and being able to 

run multiple Docker containers (and the application within them) on one instance of Linux, with 

each container isolated from the others. However, with all innovations come new management 

challenges. This paper discusses the benefits of Docker, these new challenges and how they are 

best addressed. 



I. A Brief History of Virtualization 

VMware pioneered data center virtualization with its vSphere product, which is a layer of 

software in between the hardware and the guest operating systems and which results in 

operating systems and their entire stacks running in virtual machines. Note that in a Type 1 

Hypervisor system, each application has its own unique stack and instance of an entire operating 

system. VMware vSphere is widely deployed in enterprise data centers worldwide and is the de-

facto standard for on-premise enterprise data center management.  

Containerization, i.e. Docker, allows there to be just one host operating system, and provides a 

layer of software at the top of the operating system that isolates multiple applications and their 

required supporting stacks of software from each other, and from the operating system.  

The architectural differences between a traditional Hypervisor and a Container are shown in the 

image below. 

 



II. Docker and its Advantages 

According to the Docker website, “Docker is an open platform for developers and sysadmins to 

build, ship, and run distributed applications. Consisting of Docker Engine, a portable, lightweight 

runtime and packaging tool, and Docker Hub, a cloud service for sharing applications and 

automating workflows, Docker enables apps to be quickly assembled from components and 

eliminates the friction between development, QA, and production environments.” 

Ultimately, Docker is an open source project that leverages Linux Container technology to enable 

rapid application deployment, simpler testing, maintenance, and troubleshooting while improving 

security. 

Docker works with and consists of the following components: 

▪ The Docker Container – This is a sandbox for an application or a component of an application. Each 
container is based upon an image that holds the necessary configuration data for that container. 

▪ The Docker Image – This is a static snapshot of the configuration of the container. It is a read-only 
layer that is never modified. The image is updated by writing a new image on top of the old one – 
while the old one is preserved. This allows easy roll-back to previous configurations. 

▪ Base Image – This is an image that has no parent and that just contains the runtime environment for 
applications, components or services that are in other images. 

▪ The Docker Hub – Registry of Docker images. 

▪ The Dockerfile – a configuration build file with instructions for Docker image. This is how build 
procedures are automated, shared, and reused. 

 

Advantages of Docker 

Ultimately, Docker makes it easy to manage the deployment of complex distributed applications. 

Docker provides the following advantages for both developers and systems administrators: 

▪ The process of bringing code into production is accelerated and streamlined. Since the containers 
include the run time components of the operating system needed in order for the application to 
function, those components remain consistent through the entire development, testing, pilot and 
production release process. 

▪ Since the libraries and run times that the application needs are included in the Docker container, 
containers are portable across multiple Linux distributions. This allows enterprises to run fully 
supported enterprise versions of Linux in production without having to necessarily buy support for 
Linux instances used in development and test. 

▪ Version control and change control. Since Docker containers are fully versioned, it is easy to roll back 
to a previous version of problems arise with a new release into production. 

▪ Reuse of containers. Since containers can be nested, standards can be created for certain 
components and then reused across many applications. This leads to greater consistency across the 
environment and fewer problems. 

▪ The Docker Hub provides a centralized and shared repositories of Docker containers and images. 
Docker Hub makes it easy to use a remote repository to share your container with others. 

▪ Docker images are small and have minimal overhead which helps rapid delivery and reduces the time 
to deploy updates into production 

▪ Application maintenance is simplified as Docker virtually eliminates problems with application 
dependencies. 



III. Virtualization and Containers 

While at first glance Docker and VMware seem similar and therefore perhaps competitive there 

are important details to the similarities and the differences that matter. 

Docker and VMware 

At the highest level, both Docker and VMware offer the same benefit – the ability to run multiple 

applications on the same physical server without the risk of conflicts in versions of software 

between the various applications and their required supporting software. VMware accomplishes 

this by putting the application, its required libraries, and the underlying operating system into a 

virtual machine. Docker accomplishes this by putting the application and its required libraries 

into a container that shares a base kernel and allows running multiple containers on one instance 

of Linux (instead of running multiple complete Linux instances). Docker has a significant 

advantage in that it requires only one instance of the operating system and can then share that 

operating system across multiple application instances. The proponents of Docker point out that 

with a Type 1 Hypervisor there are two redundant layers of software managing CPU, memory, 

network and disk resources – one in the hypervisor, and one in the guest operating system. With 

Docker this redundancy is eliminated, which the advocates of Docker claim will lead to increased 

efficiencies and greater densities. 

The prospect of Docker emerging as a competitive alternative to VMware vSphere has lead 

VMware to embark on an effort to demonstrate that the most efficient and effective way to run 

Docker containers is inside of VMware vSphere virtual machines. This is documented in “VMware 

and Docker – Better Together” a blog from the CTO Office of VMware. Google has delivered Live 

Migration for the containers hosted in its Google Cloud Platform. It is rumored that Amazon is 

working on Live Migration as well. ClusterHQ has launched Flocker, which is an open source 

volume and container manager for Docker, which is headed in the direction of enabling Live 

Migration of Docker containers and their storage.  

IV. Agile Development and DevOps 

Enterprises now face unprecedented pressure from the business to respond with agility, address 

issues immediately, and to run complex heterogeneous applications in highly distributed and 

dynamic environments. The Agile Development and DevOps processes for rapidly developing new 

releases and supporting rapidly changing applications in production are shown in the diagram 

below.   



 

 

 

 

 

 

 

 

The important point is that there is rapid iteration in each step of the process. Docker makes it 

easy to promote a new build across each stage from dev, to qa, to production. 

Docker enhances Agile Development and DevOps by integrating with the key parts of the tool 

chain that is associated with the delivery of code into production. Docker is transforming the 

industry in a move away from shipping applications and managing dependencies with 

configuration management tools, but rather shipping entire applications with containers. Using 

Docker means having less reliance on traditional configuration management tools like Chef and 

Puppet.  

Developers can now build, test and deliver apps as docker containers which that means that ops 

teams know even less than they did before about the apps they support, increasing the need for 

APM tools to find performance problems. The reality is that Ops will now rely less on tools like 

Chef, Puppet and will focus mostly on deployment tasks with docker containers as the 

deployment unit and the cloud as the deployment target. 

 

V. Managing Docker in Production 

The beautiful thing about Docker is that since all of the supporting libraries that an application 

needs to run are included in the Docker container, that single container can now run on a 

developers laptop, in a test lab, on-premise in a data center, or in a cloud. It is for this reason 

that Docker is getting support from a broad range of vendors including Google, Amazon, Red Hat, 

Microsoft, and VMware. 

 



Docker and the DevOps Process 

Prior to Docker, there was an unclear line between the “Dev” part of DevOps and the “Ops” part 

of DevOps in many organizations. The point of confusion (and in many cases contention) was not 

over who owned the code (Dev), but who owned the libraries and the configuration that the code 

depends upon.  

Docker gives organizations an opportunity to clearly establish where that line is. Docker 

containers can be linked together or even nested within each other. This means that your team 

could decide to just keep all of the libraries that the code depends upon in the same container 

and have the development team be responsible for the whole thing. Whatever is decided on the 

front of who supports the libraries it is clear that Docker isolates the code into a container that is 

now owned by and supported by the development team. This means that Ops is now going to 

have less visibility into what is happening with the code, and Dev is going to have less visibility 

into what is happening with the environment that supports the code. The benefit of shipping 

application via containers creates a need for APM tools that can trace transactions across 

complex and distributed environments.   

If organizations choose to make Developers solely responsible for the containers that contain the 

application code, and Agile Development is practiced against that code then another problem 

will arise. Since Ops is not going to have visibility into the code container and Dev is going to 

rapidly changing the code in that container, visibility into how the code is performing, how it is 

interacting with its supporting libraries and how the application stack is interacting with the 

supporting operating system and infrastructure is essential. Developers now own the entire stack 

at least from the base image upwards and ops are focused on deploying micro-services with 

Docker containers and have very little or no visibility into how the services are constructed or 

how they actually work, hence the increased need for APM. 

The Docker Hub 

Docker has released the Docker Hub, which is a centralized repository of official and quality 

images. This has the potential to greatly accelerate the rate that code can get released into 

production as all of the components of the application stack except the custom code itself can 

now be downloaded and assembled into a working application system. 

However while this is a great innovation for developers, it creates problems for Operations as 

now Ops is going to have to support stacks downloaded and assembled from a third party website 

into which Ops has less visibility than was the case before. So this is another case where a layer 

of abstraction (the Docker container) brings with it tremendous productivity benefits. 

Docker and Diverse Deployment Environments 

One of the benefits of Docker is all of the libraries that an application needs can be isolated into 

the same container or a set of linked and nested containers with the container that holds the 



code. This allows that container or set of containers to be deployed anywhere there is a valid and 

supported distribution of Linux (and soon Windows) running. This includes internal data center 

environments like Linux on bare metal, Linux on Type 1 hypervisors like vSphere and KVM, Linux 

in hybrid clouds, and Linux in public clouds like Amazon, Google, and Microsoft. 

Kubernetes 

Kubernetes is an open source Docker container orchestration tool developed by Google. It 

manages workloads within a cluster, automatically scheduling nodes based on demand while 

ensuring state is valid and meets user requirements. Whereas Docker is focused on the 

management of individual containers, Kubernetes groups and logically associates containers for 

management of entire service-oriented - or microservices - architected application systems. 

Mesos 

Designed to run on every machine in a data center or cloud, Apache Mesos provides APIs to 

manage CPU, memory, storage, and other computer resources (virtual or physical), allowing 

distributed systems to be built and run in a fault-tolerant and elastic way. Applications, such as 

those running in containers and orchestrated by Kubernetes, can then utilize these APIs to 

schedule and allocate the various computer resources needed. Kubernetes on Mesos is a 

significant enabler for enterprise adoption of Docker and containers. 

Docker and Micro-Services 

For quite some time, especially for net new applications deployed in the cloud, there has been a 

trend to dis-aggregate “applications” into “micro-services”. This is basically the idea of service 

oriented architecture taken to its logical conclusion where every instance of every service runs in 

its own instance in the cloud. However, this has come at a price as before Docker a separate 

cloud instance needed to be provisioned for each instance of each service. With Docker instances 

of services can be isolated into containers. Organizations can then decide whether to run one or 

many containers on each instance of the operating system. Shipping many micro-services means 

managing many application stacks and which makes packaging them as containers a much easier 

way to manage the deployment of many micro-services to many environments. When there are 

many micro-services relying on each other to provide application functionality, it can be difficult 

to pinpoint the root cause of problems. The latest generation of APM tools like AppDynamics 

make it easy to get complete visibility by providing distributed transaction tracing that gives you 

a complete view across many micro services. 

Containerized micro-services are going to take what has happened in the world of highly 

distributed service oriented applications to a whole new level as what is now one application 

running on one JVM will get broken up into many containerized micro-services. The ability to 

trace the flow of work, time the flow of work and find bottlenecks and errors across this now fine 

grained and highly distributed environment will be critical to the ability to manage containerized 

applications in production.  



Since these containerized applications will be both highly distributed and rapidly changing, this 

tracing will also have to be implemented in a “zero-configuration” manner. Therefore, the ability 

of AppDynamics to automatically discover transactions and business services and to constantly 

and automatically rediscover transactions and business services as applications change becomes a 

critical requirement for managing these new applications in production. 



 

VI. Summary and Conclusions 

Application run times (Java, .NET, PHP, Python, Ruby, etc,), compute virtualization through Type 

1 hypervisors, network virtualization, storage virtualization and now containers like Docker all 

serve to abstract an application from its supporting hardware resources. Once applications are 

abstracted from their underlying execution environment in this manner, it is essential to directly 

measure the performance and operation of the application code in production in order to ensure 

that the application system is delivering a high level of service to its end users and business 

constituents. 

Docker also creates a series of new problems that must be addressed by an APM solution. Many 

organizations will have some learning curve with Docker/containers and not everyone will be 

willing or able to partition their apps correctly: once again, there will be a need for smart, 

application performance monitoring tools to help make sense of what’s actually running where.  

Isolating the code in a container is great for the developers of the code, but it creates problems 

for operations as that code is frequently change, broken up into many micro-services, and 

distributed across diverse execution environments. 

APM solutions like AppDynamics that are specifically designed to operate in diverse, dynamic, 

highly distributed, and complex environments are, therefore, essential to the successful 

operation of these applications in production. 

VII. About The Virtualization Practice 

The Virtualization Practice provides analysis, commentary and resources on current Virtualization 

and Cloud Computing news, events, and community. We break virtualization into topics, and 

feature a world class expert in that topic as the analyst for the topic. Topic Analysts are 

responsible for writing original, objective, analytical posts in their area of expertise, for writing 

and maintaining a white paper on their market and the vendors that serve that market, and for 

assisting sponsoring vendors with marketing activities. 

Bernd Harzog is an Analyst for Cloud and Virtualization Performance Management. Bernd is also 

the CEO of APM Experts, a consulting and analysis firm focusing upon this market, vendor 

strategies in this market and customer use cases in this market.  Bernd was formerly a Gartner 

Group Research Director focusing upon the Windows Server operating system, CEO of RTO 

Software, VP of Products of Netuitive and has been involved in vendor and IT strategy sinc 


