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Server monitoring is an important part of any data 
center monitoring architecture, but too often it 
becomes a crutch and a deterrent to successfully 
building out a holistic monitoring platform. Server 
status is only one indicator of application performance, 
so relying exclusively on server monitoring tools leaves 
organizations with large blind spots and unhappy 
end users. In this paper we will explore what server 
monitoring is and how it can (and should) fit into a 
larger application performance management platform.
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What is Server Monitoring?
Server monitoring consists of monitoring operating system and associated hardware 
metrics for the servers that run your application. It’s the view of the world from 
the perspective of the server, but never from inside the running processes. Basic 
server monitoring metrics include CPU sys time, CPU wait time, used memory, free 
memory, disk queue length, % disk used, network collisions, adapter transmit rate, 
etc. Server monitoring is used by every IT organization in some shape or form.

The 9s are an (Unintentional) Lie
IT organizations are usually held to a standard of three, four, or five “nines” of 
availability, referring to the number of nines in. The table below defines each of the 
“nines” and translates their meaning into acceptable minutes of server downtime 
per year.

Availability is usually measured at the server level by checking if the server is 
responding to requests. The problem with this method is that availability at the 
server level doesn’t mean that the application is responsive or even available. If your 
servers are down, the application is down – but the opposite does not necessarily 
hold true. In order to truly address performance issues, IT needs to monitor more 
than just server availability – after all, what’s the point of keeping an application up 
and running if it is so slow or error-prone that nobody will use it?

*Assuming the cost per minute of downtime is $10,000

The chart above shows the costs associated with server and application 
downtime. Every company should track the cost of downtime for revenue-
generating applications. No company can tell you the cost of server downtime 
without understanding whether or not the application(s) using those servers have 
been impacted. 

The Nines Yearly Uptime (Minutes)
Max Yearly Downtime 
(Minutes)

99.9% (3 nines) 525,074.5 525.5

99.99% (4 nines) 525,547.5 52.5

99.999% (5 nines) 525,594.8 5.2

The Nines
Server Downtime Costs 
(Dollars)

Application Downtime Costs 
(Dollars)*

99.9% ??? 5,255,000

99.99% ??? 525,000

99.999% ??? 52,000
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What are Some Traditional Server Monitoring Tools?
Unix Systems Administrators use tools like sar, vmstat, nmon, top, topas, and netstat 
to monitor servers in real time. Windows Administrators use perfmon and WMI for 
real time monitoring. Other tools for alerting and storing historical metrics include 
BMC Patrol, HP OpenView, Miscrosoft SCOM, Nagios, Zenoss, Cacti, Zabbix, Ganglia, 
GroundWork, and Hyperic.

All of these tools are useful. All of these tools also fall woefully short of achieving 
the goal of minimizing application downtime and maximizing application 
performance.

What’s the Problem?
The problem is that none of these server monitoring tools are capable of knowing 
how your applications are performing. Some of them can probe your application to 
see if it is available or not but none can tell you why your application has ceased to 
function. No server monitoring tool can tell you any of the following:

• What is the response time of every request to my application?

• What components of my application are involved in any of my transactions and 
where is the slow down?

• How does the application code execute in the run time?

• What part of the application code is slow?

• What application functionality is used, how often, and how does it perform?

• What application functionality is throwing exceptions and what are they?

• Did a slow external service call impact my application response time  
and by how much?

Without answering those fundamental questions you don’t stand a chance of 
restoring application service in minutes instead of hours or days.

vmstat output from a Linux server. Is there any problem with the running application?



Why Nagios and Server Monitoring
Are Failing Modern Apps

4

Nagios HTTP check response times. Is the application experiencing problems as a 
whole? Problems with individual functions? Are there application Errors?

Nagios server monitoring charts: What does this tell us about our application?
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What’s the Solution?
Many companies have turned to log monitoring and analytics as a partial solution 
to this problem. Log file monitoring is nice to have, but it can’t answer many of 
the questions posed in the above section without a lot of customization. The best 
solution to the problem at hand is to use the latest generation of Application 
Performance Monitoring (APM) tools. APM tools understand the inner workings 
of your applications. They can see the code executing, the entry and exit calls to 
the application, the transactions flowing through and across multiple application 
components, exceptions and their associated impact, and much, much more.

Dynamic application flow map showing all application components.

Business transactions automatically detected, tracked, and classified.
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Making the transition from server monitoring to APM requires learning some new 
vocabulary. It’s not difficult, just different from what most monitoring personnel  
are used to.

Business Transactions (BTs) – BTs represent unique functionality within an 
application. The easiest way to understand BTs is with an example. Most applications 
require a user to provide login credentials before they can use the rest of the 
application. When you want to access a web application you visit the login page, 
fill in the required fields and click the proper button to begin the authentication 
process. When you click the button there is typically a slew of downstream activity 
on the application server, database server, LDAP service, and potentially many other 
services that all work in coordination to service your request. All of the activity that 
is generated due to your login request would be considered a “Login” business 
transaction. 

Application Flow Map – An application flow map (or topology diagram) is the 
visual representation of all of the tiers of your application and their dependent 
components or services. Application flow maps should be dynamically built and 
updated based on what the APM tool detects, not manually created.

Call Graph – Also referred to as a call stack. This is a tree-based list of application 
code that is executed on application servers in order to service a specified business 
transaction. Call graphs are used to determine what code is responsible for 
problems within an application.

Errors & Exceptions – Exceptions and errors represent failures in the application 
logic. However, not all exceptions or errors impact the business. An example of a 
common exception that is not an application problem is when a customer enters 
an invalid coupon code during checkout. This invalid code may cause an application 
exception but is not a problem that can be fixed. What’s important is to be able 
to monitor and alert on the exceptions and errors that affect your business by 
interfering with the application’s functionality.

Call graph of a single business transaction with all methods, timing, and remote calls.
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What’s the Impact?
Moving from a server-monitoring based approach to managing performance to an 
APM solution can add a lot of value for your organization. Here are just a few of the 
benefits of using APM:

• Reducing Mean Time to Resolution (MTTR) from hours/days to minutes.

• Faster development due to less time tracking down bugs.

• Fewer bugs released because they are easier to identify and remediate.

• Faster QA cycle due to rapid problem detection, isolation, and resolution.

• More stable production environment due to better development and QA.

Conclusion
Server monitoring is an important part of any IT organization’s toolkit. Tools like 
Nagios provide real-time insight into the health of your datacenter, and server 
availability is an important metric to monitor. But if your business relies on 
applications, you can’t stop there. Server health and availability is only part of 
the picture – in order to really understand how your end users experience your 
application, you need to monitor at the application level, too. The best solution for 
managing application performance should include both server monitoring and the 
application-level monitoring provided by application performance management 
(APM) products. With both of these tools in hand you can be more proactive about 
application performance and ultimately reduce the impact of performance issues on 
your end users. 

About AppDynamics
AppDynamics is the next-generation application performance management 
solution that simplifies the management of complex, business-critical apps. 
No one can stand slow applications—not IT Ops and Dev teams, not the CIO, 
and definitely not end users. With AppDynamics, no one has to tolerate slow 
performing apps ever again. 
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