
An AppDynamics Business White Paper

Developing a mobile strategy has never been more
important to companies than today. According to a
report from Kleiner Perkins, mobile applications now
account for 15% of all Internet traffic, which represents
1.5 billion users worldwide; a Pew Internet survey in
May 2013 concluded that 91% of American adults own
a cell phone and 56% of American adults own a smart
phone; and in 2014, mobile Internet usage should
surpass desktop Internet usage. Whether you have a
brick-and-mortar store or you are an Internet-based
business, the need to go mobile is greater than ever.
Figure 1 shows the pattern of mobile application usage
versus desktop application usage.

Mobile app performance explained

Figure 1. Mobile internet usage to overtake desktop internet usage in 2014

Mobile app performance explained 2

The process of bringing a mobile application to market, the drivers, requirements,
and goals are typically very different from traditional modern desktop and web-based
applications and consequently so are the challenges faced in doing this. This paper
reviews some of the challenges that mobile application developers face, presents
strategies to overcome these challenges, and then discusses the need to measure
mobile application performance and capture performance and demographic data in
order to identify and resolve performance issues.

Mobile app performance challenges
Developing a high-performing mobile application presents unique challenges from
developing a traditional or web application. It’s still important to write clean, clear, and
highly optimized code, but there are a variety of new performance concerns that mobile
applications introduce. Specifically you need to be aware that you are running on a
device that has limited resources and you need to be respectful of those resources.
Furthermore, mobile app users have already established a set of expectations that you
need to meet or you might just find yourself with a negative App Store review. This
section reviews the following topics:

– Performance concerns with mobile applications
– Native vs. Mobile web applications
– The challenge of targeting a variety of mobile devices

Performance concerns with mobile applications
Mobile application performance is defined by the user’s perception of how well the
application performs. This means that the performance of your application is measured
by how responsive it is, how quickly it starts up, how well it uses device memory, how
well it uses device power, and, in the case of an animation or game, how high its frame
rate is, or in other words, how smooth the animation or game behaves.

“Mobile app users have
already established a
set of expectations that
you need to meet or you
might just find yourself
with a negative App
Store review.”

Mobile app performance explained 3

Figure 2. Perception of responsiveness

A users expectation of responsiveness alters depending upon the device they are
using. Consider how you use your phone and how you use your web browser:
are they the same? No. When you click on a button on your web browser you
understand that the browser is making a call to a server or at least “the internet”,
so you are prepared to wait for a response. But when you tap a button within an
application on your phone, you expect it to respond immediately – if you experience
even a second or two delay you’ll be tempted to press the button again or, after
four or five seconds, you’ll probably kill the app and restart it. Therefore, when
building a mobile application, the user experience should be of main focus. All
networks calls and complex computations need to be performed in a background
thread and, if you do need wait for a server response, then display a busy indicator
while you do so to inform the user that the application is working. Furthermore, you
should try to load just enough data to draw a screen in your application and allow
your user to start working while you load the remaining data in the background.

A tangential aspect of responsiveness is startup time. How many mobile apps
that take an excessive amount of time to startup have you stopped using? If your
application needs to perform several tasks before starting, how can you mitigate
the time required to perform those tasks and present your user interface in a timely
manner? We can gauge startup time in three ways, as shown in figure 3.

Figure 3. Measuring startup times

“How many mobile apps
that take an excessive
amount of time to startup
have you stopped using?”

Mobile app performance explained 4

Figure 3 can be summarized as follows:

– First screen: the time required to show the user something on the screen
– Usable: the time that the application becomes usable and interactive
– Fully functional: the time when the application has loaded all of its resources

 and is fully functional

Because we are focusing on the user’s perception of the application responsiveness,
the first two points are the most critical. You have a choice when deploying
your application to the App Store of bundling resources with your application or
loading them from a server later. Bundled resources require a larger download and
installation time, but facilitate a faster startup time. Therefore it is important to
bundle commonly used resources, and most importantly, the resources you want
to show your user when the application starts up. Any other lesser-used resources
are better loaded from a server in a background thread while your application is
running. It is a delicate balancing act between startup time, device memory storage,
and memory usage, but you need to have your core resources available and loaded
in memory as your application starts. The key is to show your user something as
quickly as you can and then make your application interactive. Once your application
is interactive you can perform the rest of your tasks in the background.

Figure 4. iPhone memory capabilities

Next we need to be aware of how much memory our application is using. Mobile
devices are increasing in memory specs every year: at the time of this writing, my
wife has a phone with 3 gigabytes of RAM! But mobile device memory specs will
never be comparable to laptops of desktop computers, so you must consider memory
usage when designing your application. While the iPhone is certainly not the only
game in town, Figure 4 shows the memory capabilities of Apple’s various i-Devices.
The most recent devices have 1GB of memory, but devices less than two years old
only have 512MB of memory, and there are plenty of them still around.

Mobile app performance explained 5

So how can we minimize mobile device memory usage? The key to managing
memory is to maintain the user state that you need in memory, but no more.
You should not be afraid to use memory when you need it because loading data
from storage on each interaction would hurt the perceived user experience, but
you should not load a whole lot more than you need. If you have user state that
is required to build screens in your application, then by all means, load it into
memory, but just be cognizant that memory is a precious resource and you do not
need to load everything your application will ever need into memory at once.

Our next topic is power usage. The biggest causes of battery drain are:

– CPU intensive calls and complex video rendering
– Network calls

Depending on the nature of your application, you may not have much control
over the complexity of your user interface and algorithms required to build
your screens, such as with video games. As CPU power increases it is easier
to write less efficient code and still achieve adequate results, but at the cost
of CPU usage. If you expend effort to optimize your code and choose the best
performing algorithms for your objective, then you will minimize your use of the
mobile device’s CPU and hence improve battery life. Think about writing mobile
applications like you wrote desktop applications a decade ago: you want to
optimize every CPU cycle you’re using.

The other major cause of power consumption is network usage. I remember a
time recently when my phone battery, that typically lasts all day, was draining in
three hours. After investigating the problem, I found an email stuck in my outbox
and the phone was attempting to send it every couple minutes. After deleting
the message, my battery usage returned to normal. What happened? The cost of
making network calls is high, and so high in fact that it can drain your battery in a
matter of a few hours. So minimize your network calls, consider queuing multiple
network calls and sending them together in a single request, and optimize the
messages that are passed between your mobile device and your server by using
more succinct messages, such as by opting for JSON over XML and gzipping your
payload. Additionally, think long and hard about the ads that you show and the
frequency with which you show them because ads are a primary cause of network
usage and hence battery drain.

Finally, be sure to test the behavior of your application on supported devices with
the least specifications to ensure that all of your users have a good experience.
If the experience is not satisfactory then you’ll need to employ strategies such as
the following:

“The cost of making
network calls is high, and
so high in fact that it can
drain your battery in a
matter of a few hours.”

Mobile app performance explained 6

– Optimize algorithms: return to your computer science roots and analyze the
order (big Oh) of your algorithms and try running your application inside a code
profiler that will identify your bottlenecks.

– Choose resources with lesser resolution (easier to paint) for devices with screens
of lesser resolution. For example, the latest Samsung Galaxy S5 has a 1920x1080
resolution, but the two-year-old Galaxy S3 only has a 1280x720 resolution. There
is no benefit to sending a device images with greater resolutions than the device
itself.

– Gracefully degrade complex functionality: remove some of the nice-to-have
features such as anti-aliasing, complex texture mapping, and so forth from your
painting algorithms if you identify performance issues. Users with powerful
devices will see all of the niceties, but users with less powerful devices will still
have a good user experience.

This section presented an overview of several important factors that influence a
user’s perception of the performance of your application. Now let’s review some
additional factors you need to consider when building mobile applications.

Native vs. mobile web apps
When building a mobile application, you have a few choices:

– Build a native application for specific devices
– Build a mobile web application that can run across devices
– Build a native applications that display HTML interfaces

And as you might guess, each option has its pros-and-cons. The benefit to building
a native application for your target platforms, such as iOS and Android, is that
the performance of the application will be much better. The drawback is that you
will need to maintain separate code-bases for each platform, and possibly for
each version of each platform, and you might need to hire different individuals
with different skillsets to build different versions of your application. Furthermore,
you need to decide whether or not you are going to support other platforms,
such as BlackBerry and Windows Phone, and, if so, are you going to build native
applications for them too or find a generic framework for these lesser-used
platforms. This all boils down to a longer time-to-market and more complexity
in writing and maintaining different versions of the same application on different
platforms.

An important input to your decision of whether or not to build a native app is the
overall breakdown of mobile operating system market share. According the IDC’s
analysis of 2013 mobile device shipments, here are the top 5 operating systems
and their percentage of market share:

– Android: 78.6%
– iOS: 15.2%
– Windows Phone: 3.3%
– BlackBerry: 1.9%
– Other: 1.0%

Mobile app performance explained 7

Furthermore, if you decide to develop a native app, you need to identify the
versions of each operating system you are going to support. According to
a December 2013 article in Apple Insider, iOS operating system versions are
distributed as follows:

– iOS 7: 74%
– iOS 6: 22%
– Older: 4%

Therefore, if your application supports iOS 6 then you will be able to reach 96%
of the iOS market. The Android market, however, is more fragmented. According
to Google, at the time of this writing, Android operating system versions are
distributed as follows:

– 4.4 (KitKat): 8.5%
– 4.3: 8.5%
– 4.2.x: 18.8%
– 4.1.x (Jelly Bean): 33.5%
– 4.0.3 – 4.0.4 (Ice Cream Sandwich): 13.4%
– 3.2 (Honeycomb): 0.1%
– 2.3.3 – 2.3.7 (Gingerbread): 16.2%
– 2.2 (Froyo): 1%

In order to reach 82.7% of the Android market you need to support Ice Cream
Sandwich and in order to reach 99% of the Android market you need to support
Gingerbread.

In other words, if you want to maximize your reach while supporting many of the
latest operating system features, you will need to maintain multiple versions of your
app for multiple operating systems. The user experience is better, but the amount
of work is substantial!

Building a mobile web application using HTML, CSS, and JavaScript and compiling it
with a framework that deploys to multiple platforms has the following benefits:

– Quicker time-to-market because one code base supports multiple platforms (build
it once rather than multiple times)

– Reuse existing web development skills in your current organization
– Easier maintenance because bug fixes and feature enhancements only need to

performed in one place

But it is not a panacea: one code base that targets multiple platforms does so at the
expense of performance. Most of these frameworks provide a virtual machine, so-
to-speak, that sits between your application and the underlying operating system.
This virtual machine interprets actions executed on your application and translates
those to native system calls. As a result this intermediate layer can slow down your
application.

Popular frameworks for building native applications that abstract the low-level
native code implementation include:

“If you want to maximize
your reach while
supporting many of the
latest operating system
features, you will need to
maintain multiple versions
of your app for multiple
operating systems.”

Mobile app performance explained 8

– PhoneGap: PhoneGap, which is sponsored by Adobe, is a free and open source
framework that allows you to build your application using HTML, CSS, and
JavaScript and deploy natively to iOS, Android, Windows Mobile, BlackBerry,
WebOS, and more. At run-time, it launches a native web browser on the mobile
device and runs your web pages inside that web browser. It provides a JavaScript
“bridge” that allows you to send messages to native components.

– Appcelerator Titanium: Titanium, which is sponsored by Appcelerator, is a
platform that allows you to develop mobile apps using JavaScript and deploy
natively to iOS and Android. It is a framework for developing native apps that
do not run inside of a mobile device web browser, but instead run using native
controls. Your JavaScript is interpreted at runtime and the Titanium engine
manages the native version of your application with the logic in your JavaScript.
It aims to provide you with the best of both worlds: a JavaScript abstraction of
your mobile application with access to native functionality. The learning curve for
Titanium is higher than PhoneGap, but, depending on what your application is
doing, the performance may be better.

– Sencha Touch: Sencha Touch, which is sponsored by Sencha, is a high
performance JavaScript framework for building HTML5 mobile applications that
can be compiled into native applications using PhoneGapor Sencha’s command
line tool.

So what is the best solution? The answer depends on several factors:

– How complex is your application? Is it little more than a web application running
in a mobile format or is it complex and presenting a unique user experience?

– How important is your application to your business? Is it mostly a marketing tool
or are your users performing core business functionality with it?

– How frequently will your users be using your application? Is it something they
might refer to once a week or once a month or will then be using it several times
a day?

In short, if your application is complex, significant to your business, or frequently
used then you want to guarantee the best experience for your users, which
probably necessitates a native application. If, on the other hand, your application
is simple and not core to your users’ daily lives then you can gain valuable time-to-
market and ease of maintenance by standardizing on a single code base. You need
to measure your return on investment (ROI) and answer the question of whether it
is worth it to your business to invest the time to build native applications.

Variety of mobile devices
In order to be successful in building high-performance mobile applications, you
need to identify your target platforms. Various devices have various limitations on
their capabilities. Specifically, devices are different in terms of:

– CPU/GPU processing capabilities
– RAM
– Screen Size / Form Factor
– Power
– Sensors
– Connectivity

Mobile app performance explained 9

While it may be a considerable amount of work, user-perceived high-performance
applications will take each of these factors into consideration and provide an
experience that works well in different scenarios. For example, on a powerful CPU/
GPU device, your application might opt to overlay beautiful, yet complex, textures
on objects to enhance the visualization of a game. But that same application might
use simpler textures on a less powerful device. The end result is that both users will
have a positive experience, but the visualization will be different. A strategy that I
have employed is to interrogate the device’s capability as a “calibration” step and
then adjust the complexity of my application based on the capabilities of the device.
Or stated another way, a user with a lesser performing device does not want to
see a beautifully rendered screen that is so choppy it is not useable. This approach
is somewhat analogous to a strategy we employ in web development: graceful
degradation. While graceful degradation has deeper roots than front-end application
behavior, the idea is simple: ensure that your application looks and performs well
based on the capabilities of the device. Not all users will have the same experience,
but all users will have a good experience.

In addition to the device-specific capabilities, you also need to be cognizant of carrier-
specific capabilities upon which the user’s device is running. This is not to say that you
need to have profiles for different carriers, but your graceful degradation strategy is
applicable to network speed. Just as video players support adaptive bitrate streaming,
in which the player detects the user’s bandwidth and CPU capabilities in real-time and
adjusts the quality of the video stream accordingly, if your application loads data from
a server, then you can improve user perceived performance by maintaining different
quality resources and load the resources most appropriate for both the device as well
as the available bandwidth. It is highly recommended that you detect your bandwidth
and adjust your network communications accordingly. If your bandwidth is low then
be sure to show less ads, report status back to your server less often, and download
smaller resources. It is important to note that this is an ongoing process as your
application is running because mobile devices are “mobile” and may move in and out
of low coverage zones.

Mobile app performance explained 10

Managing mobile app performance
You’ve employed the advice in the previous section to develop and test your
application on multiple devices and it is rock solid, but how do you avoid receiving
a bad review on the App Store because your application is not performing well
on certain devices or crashing in certain circumstances? The answer is that there
is nothing you can do unless you know what is happening in your application.
Therefore the key is to assess the performance of your mobile application, capture
error and crash reports, and correlate mobile app performance with server
performance. Specifically, you should be capturing the following information from
your application at runtime:

– Crash and Error Reports
– Device performance (CPU usage, memory usage, etc.)
– Application response time
– Server response time
– Demographic data (operating system, device type, carrier, etc.)

Whenever an application crashes, a crash or error report is generated and your
application has access to it. You need to capture this report and send it to your
server with relevant demographic data, such as the device operating system, device
type, connection type, carrier, etc. With this information you can learn what was
happening during the crash and, when correlating with other crashes, you can
determine whether or not there is a device or operating system specific root cause
of the issue. Figure 6 shows a sample crash report.

Mobile app performance explained 11

Figure 6. Sample crash report

The crash report in figure 6 can be used to identify exactly where the application
crashed and it shows the device type (iPhone 5,1) as well as the operating system
version (iOS 6.1.4).

When an application crashes or starts performing poorly, it is important to correlate
the behavior of the application with any server calls it is making. Depending on
the nature of your application, it may very well be the performance of your server
rather than the performance of your application itself. Figure 7 show an example
that traces a mobile device server call.

Mobile app performance explained 12

Figure 7. Mobile device–to–Server call

Finally, individual crashes and performance snapshots are helpful, but more
importantly, you want to identify any systemic issues that might be occurring in
your application. To do this you will need to organize your data with the following
demographics:

– Operating System and version
– Device Type
– Network Carrier
– Connection Type (3G, 4G, Wifi, etc.)
– Application Version
– User Geography

For example, figure 9 shows a screenshot that lists the business transactions
executed on the server side, correlated with the performances of those business
transactions on both Android and iOS, and grouped by geographical location.

Figure 9. Device response time correlated with server response time and
augmented with device type and geographical demographics

AppDynamics, Inc.
www.appdynamics.com

Copyright © 2014 AppDynamics, Inc. All rights reserved. The term
APPDYNAMICS and any logos of AppDynamics are trademarked or
registered trademarks of AppDynamics, Inc.

Try it FREE at
appdynamics.com

With this granularity of information, you will be well equipped to identify systemic
issues originating from geographical location, device type, carrier, operating system,
and so forth. When you detect a performance anomaly in your environment, first
check to see if it is across all of you clients or a subset. If you do determine the
problem is not global, but across a subset of devices, locations, etc., then you can
use demographic filtering to identify the problem areas. And if there are crash
reports then they can help you diagnose the root cause of many problems.

Conclusion
Managing the performance of mobile applications is different from managing the
performance of traditional desktop or web-based applications. Mobile devices
introduce a new set of constraints, such as lesser powered CPUs and lower memory,
that require us to think about application development more like we did a decade
ago when resources were more scarce than on the servers we work on today.
Furthermore, mobile application performance is determined by user perception
moreso than by quantitative measurement. The difference between a good user
experience and a postive App Store review and a bad user experience and a
negative App Store review might be a couple of seconds.

This paper presented strategies to improve the user perceived performance of
your application by reviewing both the lifecycle of a running mobile application as
well as understanding how users interact with your application. Simple strategies,
such as optimizing your algorithms with a code profiler and gracefully degrading
performance with smaller resources and less nicities list anti-aliased drawings when
performance is slow, can equate to a good user experience, which will pay dividends
in the App Store.

Finally this paper emphasized the importance of measuring and managing the
performance of your mobile application. Specifically, it recommended capturing
crash and error reports, correlating client interactions and device performance with
server calls, and capturing important demographics such as device type, operating
system, connection type, carrier, and so forth.

Empowered with good device diagnostics correlated with server performance
and augmented by smart demographics you can identify performance issues and
hopefully resolve them before you receive a negative App Store review.

